??
如今,隨著芯片、光纖陀螺尋北儀、大數據技術的發展,無人機開始了智能化、終端化、集群化的趨勢,讓無人機從遠離人們視野的軍事應用飛入了尋常百姓家。不可否認,飛控技術的發展是近幾年無人機變化的最大推手。
飛行控制系統(Flight control system)簡稱飛控,可以看作飛行器的大腦。多軸飛行器的飛行、懸停,姿態變化等等都是由多種傳感器將飛行器本身的姿態數據傳回飛控,再由飛控通過運算和判斷下達指令,由執行機構完成動作和飛行姿態調整。
現在的飛控內部使用的都是由三軸陀螺儀,三軸加速度計,三軸地磁傳感器和氣壓計組成的一個IMU,也稱慣性測量單元。
三軸陀螺儀,三軸加速度計,三軸地磁傳感器中的三軸指的就是飛機左右,前后垂直方向上下這三個軸,一般都用XYZ來代表。左右方向在飛機中叫做橫滾,前后方向在飛機中叫做俯仰,垂直方向就是Z軸。最早的陀螺儀是一個高速旋轉的陀螺,通過三個靈活的軸將這個陀螺固定在一個框架中,無論外部框架怎么轉動,中間高速旋轉的陀螺始終保持一個姿態。通過三個軸上的傳感器就能夠計算出外部框架旋轉的度數等數據。
飛控最基本的功能控制一架飛機在空中飛行時的平衡,是由IMU測量,感知飛機當前的傾角數據通過編譯器編譯成電子信號,將這個信號通過信號新時時傳輸給飛控內部的單片機,單片機負責的是運算,根據飛機當前的數據,計算出一個補償方向,補償角,然后將這個補償數據編譯成電子信號,傳輸給舵機或電機,電機或舵機在去執行命令,完成補償動作,然后傳感器感知到飛機平穩了,將實時數據再次給單片機,單片機會停止補償信號,這就形成了一個循環,大部分飛控基本上都是10HZ的內循環,也就是1秒刷新十次。
由于目前傳感器設計水平的限制,這些傳感器測量的數據都會產生一定的誤差,并可能受到環境的干擾,從而影響狀態估計的精度。為了保障飛行性能,就需要充分利用各傳感器數據共同融合出具有高可信度的15個狀態,即組合導航技術。組合導航技術結合GPS、IMU、氣壓計和地磁指南針各自的優缺點,通過電子信號處理領域的技術,融合多種傳感器的測量值,獲得更精準的狀態測量。
為了提升航拍無人機的感知能力和飛行性能,除了以上基礎傳感器方案以外,現在主流的無人機產品都加入了先進的視覺傳感器、超聲波傳感器和IMU與指南針冗余導航系統。雙目立體視覺系統可根據連續圖像計算出物體的三維位置,除了避障功能以外還能提供定位與測速。機身下方的超聲波模塊起到輔助定高的作用,而冗余的IMU和指南針在一個元件受到干擾時,冗余導航系統會自動切換至另一個傳感器,極大提高了組合導航的可靠性。
智能導航系統引入了多個傳感器,數據量和復雜程度大幅提升,針對視覺和傳感器對導航和飛行控制算法進行多次系統重構,增加新的軟件模塊與架構,全面提升了飛行的性能與可靠性。
??
上一條: 超低價尋北儀淺談垂直陀螺儀讓飛行器更穩定
下一條: 無